The energy released by the calcium-activated enzymic dephosphorylation of adenosine triphosphate (ATP) brings about muscle contraction through the sliding action of the actin filaments over the myosin filaments, forming contractile actomyosin. On relaxation, the reverse process occurs.
The sliding filament theory suggests the myosin/actin bond moves toward the center of the sarcomere, releasing energy, creating tension, and pulling muscle fibers together, thus creating a muscular contraction.
In this theory, the lengths of the actin an myosin filaments do not change. Rather, myosin cross bridges, or the myosin heads, extend out from the helical part of the molecule, detach, rotate and attach again to the active site on the actin filament, which results in actin being pulled across the myosin filament.
Muscle contraction and relaxation theory